Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Radiology ; 310(2): e233241, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38411522
2.
Clin Transl Med ; 14(2): e1573, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38318637

RESUMO

BACKGROUND: Patients who possess various histological subtypes of early-stage lung adenocarcinoma (LUAD) have considerably diverse prognoses. The simultaneous existence of several histological subtypes reduces the clinical accuracy of the diagnosis and prognosis of early-stage LUAD due to intratumour intricacy. METHODS: We included 11 postoperative LUAD patients pathologically confirmed to be stage IA. Single-cell RNA sequencing (scRNA-seq) was carried out on matched tumour and normal tissue. Three formalin-fixed and paraffin-embedded cases were randomly selected for 10× Genomics Visium analysis, one of which was analysed by digital spatial profiler (DSP). RESULTS: Using DSP and 10× Genomics Visium analysis, signature gene profiles for lepidic and acinar histological subtypes were acquired. The percentage of histological subtypes predicted for the patients from samples of 11 LUAD fresh tissues by scRNA-seq showed a degree of concordance with the clinicopathologic findings assessed by visual examination. DSP proteomics and 10× Genomics Visium transcriptomics analyses revealed that a negative correlation (Spearman correlation analysis: r = -.886; p = .033) between the expression levels of CD8 and the expression trend of programmed cell death 1(PD-L1) on tumour endothelial cells. The percentage of CD8+ T cells in the acinar region was lower than in the lepidic region. CONCLUSIONS: These findings illustrate that assessing patient histological subtypes at the single-cell level is feasible. Additionally, tumour endothelial cells that express PD-L1 in stage IA LUAD suppress immune-responsive CD8+ T cells.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Neoplasias Pulmonares/metabolismo , Células Endoteliais/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Perfilação da Expressão Gênica
3.
Ann Am Thorac Soc ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335160

RESUMO

Rationale Chronic obstructive pulmonary disease (COPD) and emphysema are associated with endothelial damage and altered pulmonary microvascular perfusion. Molecular mechanisms underlying these changes are poorly understood in patients due, in part, to the inaccessibility of the pulmonary vasculature. Peripheral blood mononuclear cells (PBMC) interact with the pulmonary endothelium. Objective To test the association between gene expression in PBMCs and pulmonary microvascular perfusion in COPD. Methods The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited two independent samples of COPD cases and controls with 10 or more pack-years. In both samples, pulmonary microvascular blood flow, pulmonary microvascular blood volume (PMBV), and mean transit time were assessed on contrast-enhanced MRI, and PBMC gene expression was assessed by microarray. Additional replication was performed in a third sample with PMBV measures on contrast-enhanced, dual-energy CT. Differential expression analyses were adjusted for age, gender, race-ethnicity, educational attainment, height, weight, smoking status, and pack-years. Results The 79 participants in the discovery sample had mean age of 69±6 years, 44% were female, 25% were non-white, 34% were current smokers and 66% had COPD. There were large PBMC gene expression signatures associated with pulmonary microvascular perfusion traits, with several replicated in the replication sets with MRI (n=47) or dual-energy CT scan (n=157) measures. Many of the identified genes are involved in inflammatory processes, including NF-κB and chemokine signaling pathways. Conclusions PBMC gene expression in NF-κB, inflammatory and chemokine signaling pathways was associated pulmonary microvascular perfusion in COPD, potentially offering new targetable candidates for novel therapies.

4.
Gene ; 907: 148260, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38342252

RESUMO

Pokkah Boeng disease (PBD), caused by Fusarium sacchari, severely affects sugarcane yield and quality. Necrosis-inducing secreted protein 1 (Nis1) is a fungal secreted effector that induces necrotic lesions in plants. It interacts with host receptor-like kinases and inhibits their kinase activity. FsNis1 contains the Nis1 structure and triggered a pathogen-associated molecular pattern-triggered immune response in Nicotiana benthamiana, as reflected by causing reactive oxygen species production, callose accumulation, and the upregulated expression of defense response genes. Knockout of this gene in F. sacchari revealed a significant reduction in its pathogenicity, whereas the pathogenicity of the complementary mutant recovered to the wild-type levels, making this gene an important virulence factor for F. sacchari. In addition, the signal peptide of FsNis1 was required for the induction of cell death and PTI response in N. benthamiana. Thus, FsNis1 may not only be a key virulence factor for F. sacchari but may also induce defense responses in plants. These findings provide new insights into the function of Nis1 in host-pathogen interactions.


Assuntos
Fusarium , Fusarium/genética , Imunidade Vegetal/genética , Virulência/genética , Fatores de Virulência/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Mol Plant Pathol ; 25(1): e13414, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38279852

RESUMO

Fusarium sacchari is one of the primary pathogens causing pokkah boeng disease, which impairs the yield and quality of sugarcane around the world. Understanding the molecular mechanisms of the F. sacchari effectors that regulate plant immunity is of great importance for the development of novel strategies for the persistent control of pokkah boeng disease. In a previous study, Fs00367 was identified to inhibit BAX-induced cell death. In this study, Fs00367nsp (without signal peptide) was found to suppress BAX-induced cell death, reactive oxygen species bursts and callose accumulation. The amino acid region 113-142 of Fs00367nsp is the functional region. Gene mutagenesis indicated that Fs00367 is important for the full virulence of F. sacchari. A yeast two-hybrid assay revealed an interaction between Fs00367nsp and sugarcane ScPi21 in yeast that was further confirmed using bimolecular fluorescence complementation, pull-down assay and co-immunoprecipitation. ScPi21 can induce plant immunity, but this effect could be blunted by Fs00367nsp. These results suggest that Fs00367 is a core pathogenicity factor that suppresses plant immunity through inhibiting ScPi21-induced cell death. The findings of this study provide new insights into the molecular mechanisms of effectors in regulating plant immunity.


Assuntos
Fusarium , Saccharum , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Imunidade Vegetal/genética , Saccharum/genética , Saccharum/metabolismo , Morte Celular , Doenças das Plantas
6.
J Periodontol ; 95(1): 9-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37287337

RESUMO

BACKGROUND: The purpose of this randomized, controlled split-mouth study was to evaluate a videoscope as a visual adjunct to scaling and root planing when utilized in combination with minimally invasive surgery. METHODS: Twenty-five pairs (89 interproximal surfaces) of periodontally hopeless teeth planned for extraction were scaled and root planed with minimal surgical access using surgical loupes (control) or adjunctive use of a videoscope (test). Teeth were extracted with minimal trauma, stained with methylene blue, and photographed with a digital microscope for analysis. The primary outcome of residual calculus was calculated as a percentage of the total interproximal area of interest. Secondary outcomes included treatment time, as well as residual calculus according to probing depth, tooth location, and treatment date. Data were analyzed using Student's paired t-tests, two-way analyses of variance, and Spearman's correlation tests. RESULTS: Residual calculus area was 2.61% on control and 2.71% on test surfaces with no significant difference between groups. Subgroup analysis showed no difference in residual calculus between groups at moderate or deep sites. Treatment time per surface was significantly longer in the test group compared to the control group. Treatment order, tooth location, and operator experience did not significantly affect the primary outcome. CONCLUSIONS: Though the videoscope provided excellent visual access, it did not improve the efficacy of root planing for flat interproximal surfaces during minimally invasive periodontal surgery. Small amounts of calculus remain after instrumentation even with minimal surgical access and when root surfaces appear visually clean and tactilely smooth.


Assuntos
Cálculos Dentários , Dente , Humanos , Aplainamento Radicular , Cálculos Dentários/terapia , Raspagem Dentária , Raiz Dentária/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos
7.
JCO Precis Oncol ; 7: e2300391, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38061008

RESUMO

PURPOSE: Trastuzumab deruxtecan (T-DXd) is an antibody-drug conjugate approved for the treatment of several advanced cancers; however, severe or fatal interstitial lung disease/pneumonitis can occur. We characterized the computed tomography (CT) patterns of T-DXd‒related pneumonitis as a marker for its clinical severity. MATERIALS AND METHODS: Ninety patients with advanced cancers who developed T-DXd‒related pneumonitis in two completed single-arm clinical trials were included. Three radiologists independently characterized the CT patterns of pneumonitis at diagnosis, for analyses of those patterns' relationships with clinical severity and pneumonitis outcome. RESULTS: T-DXd‒related pneumonitis most commonly presented with cryptogenic organizing pneumonia (COP) pattern, observed in 65 patients (72%), followed by a newly identified COP/hypersensitivity pneumonitis (HP) pattern (13%), acute interstitial pneumonia (AIP)/acute respiratory distress syndrome (ARDS) pattern (11%), and HP pattern (3%). A subset of cases with COP pattern demonstrated an atypical distribution with upper and peripheral lung involvement (6/65; 9%). CT patterns were associated with Common Terminology Criteria for Adverse Events severity grades of pneumonitis, with the AIP/ARDS pattern having higher grades compared with others (P < .0001). Fatal pneumonitis was more common in the AIP/ARDS pattern than in others (P = .005). The onset of pneumonitis was earlier in the AIP/ARDS pattern compared with others (median time to onset: at 17.9 v 32.7 weeks of therapy; P = .019). Pneumonitis was treated by withholding T-DXd with or without corticosteroids in most patients (78/90; 87%). CONCLUSION: T-DXd‒related pneumonitis most commonly demonstrated a COP pattern, with a subset having an atypical distribution. The AIP/ARDS pattern was indicative of severe, potentially fatal pneumonitis, and requires immediate clinical attention to mitigate serious adverse events.


Assuntos
Imunoconjugados , Doenças Pulmonares Intersticiais , Neoplasias , Pneumonia , Síndrome do Desconforto Respiratório , Humanos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/tratamento farmacológico , Tomografia Computadorizada por Raios X
8.
Microbiol Spectr ; 11(6): e0145223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962343

RESUMO

IMPORTANCE: Common fungal extracellular membrane (CFEM) domain-containing protein has long been considered an essential effector, playing a crucial role in the interaction of pathogens and plant. Strategies aimed at understanding the pathogenicity mechanism of F. sacchari are eagerly anticipated to ultimately end the spread of pokkah boeng disease. Twenty FsCFEM proteins in the genome of F. sacchari have been identified, and four FsCFEM effector proteins have been found to suppress BCL2-associated X protein-triggered programmed cell death in N. benthamiana. These four effector proteins have the ability to enter plant cells and inhibit plant immunity. Furthermore, the expression of these four FsCFEM effector proteins significantly increases during the infection stage, with the three of them playing an essential role in achieving full virulence. These study findings provide a direction toward further exploration of the immune response in sugarcane. By applying these discoveries, we can potentially control the spread of disease through techniques such as host-induced gene silencing.


Assuntos
Proteínas Fúngicas , Proteínas de Membrana , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulência , Imunidade Vegetal , Doenças das Plantas/microbiologia
9.
Clin Transl Med ; 13(9): e1401, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37700496

RESUMO

Peripheral immune cells play important roles in the maintenance of systemic and microenvironmental hemostasis. Measurements of circulating blood cells by single-cell RNA sequencing (scRNA-seq) were proposed as one of the routine measures in clinical biochemistry of hematology. Out of translational challenges, defining precise identities of cell subsets and states is more difficult, due to the complexity of immune cell development, location, regulation, function, and metabolism. It is also a challenge to precisely interpret clinical significance and impact of each cell identity marker gene panel (ciMGPs). ciMGPs have potential to advance the understanding of systemic responses of the disease, identify disease-specific biomarkers, and to define cell heterogeneity. Recently, a large number of peripheral cell subsets and expending/activating states have been identified and validated for use in the fast developments in clinical single cell biomedicine. Defining specificity, measurability, and repeatability of cell subsets/states is important for translation of peripheral scRNA-seq in clinical hematology and biochemistry. The development of standard operating procedure and performance of clinical trials in large populations at various ages, diseases, and therapies will promote the clinical translation of ciMGPs to measures. Thus, defining cell subset/state identities will provide the multi-dimensional and comprehensive readouts of systemic immune cells, the precision monitoring of immune dynamics, and deeper-understanding of the disease and response to therapy.


Assuntos
Relevância Clínica , Hematologia , Diferenciação Celular
10.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446015

RESUMO

Nitrogen availability might play an essential role in plant diseases by enhancing fungal cell growth and influencing the expression of genes required for successful pathogenesis. Nitrogen availability could modulate secondary metabolic pathways as evidenced by the significant differential expression of several core genes involved in mycotoxin biosynthesis and genes encoding polyketide synthase/nonribosomal peptide synthetases, cytochrome P450 and carbohydrate-active enzymes in Fusarium sacchari, grown on different nitrogen sources. A combined analysis was carried out on the transcript and metabolite profiles of regulatory metabolic processes and the virulence of Fusarium sacchari grown on various nitrogen sources. The nitrogen regulation of the gibberellin gene cluster included the metabolic flux and multiple steps of gibberellin synthesis. UHPLC-MS/MS-based metabolome analysis revealed the coordination of these related transcripts and the accumulation of gibberellin metabolites. This integrated analysis allowed us to uncover additional information for a more comprehensive understanding of biological events relevant to fungal secondary metabolic regulation in response to nitrogen availability.


Assuntos
Fusarium , Transcriptoma , Metabolismo Secundário/genética , Nitrogênio/metabolismo , Espectrometria de Massas em Tandem , Giberelinas/metabolismo , Regulação Fúngica da Expressão Gênica
11.
Microbiol Spectr ; 11(3): e0016523, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140457

RESUMO

Fusarium sacchari is one of the primary pathogens causing Pokkah Boeng disease (PBD) in sugarcane in China. Pectate lyases (PL), which play a critical role in pectin degradation and fungal virulence, have been extensively studied in major bacterial and fungal pathogens of a wide range of plant species. However, only a few PLs have been functionally investigated. In this study, we analyzed the function of the pectate lyase gene, FsPL, from F. sacchari. FsPL is a key virulence factor of F. sacchari and can induce plant cell death. FsPL also triggers the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response in Nicotiana benthamiana, as reflected by increases in reactive oxygen species (ROS) production, electrolyte leakage, and callose accumulation, as well as the upregulation of defense response genes. In addition, our study also found that the signal peptide of FsPL was necessary for induced cell death and PTI responses. Virus-induced gene silencing showed that FsPL-induced cell death in Nicotiana benthamiana was mediated by leucine-rich repeat (LRR) receptor-like kinases BAK1 and SOBIR1. Thus, FsPL may not only be a critical virulence factor for F. sacchari but may also induce plant defense responses. These findings provide new insights into the functions of pectate lyase in host-pathogen interactions. IMPORTANCE Pokkah Boeng disease (PBD) is one of the main diseases affecting sugarcane in China, seriously damaging sugarcane production and economic development. Therefore, it is important to clarify the pathogenic mechanisms of this disease and to provide a theoretical basis for the breeding of PBD-resistant sugarcane strains. The present study aimed to analyze the function of FsPL, a recently identified pectate lyase gene from F. sacchari. FsPL is a key virulence factor of F. sacchari that induces plant cell death. Our results provide new insights into the function of pectate lyase in host-pathogen interactions.


Assuntos
Imunidade Vegetal , Virulência , Fatores de Virulência/genética , Doenças das Plantas/microbiologia
12.
Hortic Res ; 10(4): uhad020, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035858

RESUMO

The lemon (Citrus limon; family Rutaceae) is one of the most important and popular fruits worldwide. Lemon also tolerates huanglongbing (HLB) disease, which is a devastating citrus disease. Here we produced a gap-free and haplotype-resolved chromosome-scale genome assembly of the lemon by combining Pacific Biosciences circular consensus sequencing, Oxford Nanopore 50-kb ultra-long, and high-throughput chromatin conformation capture technologies. The assembly contained nine-pair chromosomes with a contig N50 of 35.6 Mb and zero gaps, while a total of 633.0 Mb genomic sequences were generated. The origination analysis identified 338.5 Mb genomic sequences originating from citron (53.5%), 147.4 Mb from mandarin (23.3%), and 147.1 Mb from pummelo (23.2%). The genome included 30 528 protein-coding genes, and most of the assembled sequences were found to be repetitive sequences. Several significantly expanded gene families were associated with plant-pathogen interactions, plant hormone signal transduction, and the biosynthesis of major active components, such as terpenoids and flavor compounds. Most HLB-tolerant genes were expanded in the lemon genome, such as 2-oxoglutarate (2OG)/Fe(II)-dependent oxygenase and constitutive disease resistance 1, cell wall-related genes, and lignin synthesis genes. Comparative transcriptomic analysis showed that phloem regeneration and lower levels of phloem plugging are the elements that contribute to HLB tolerance in lemon. Our results provide insight into lemon genome evolution, active component biosynthesis, and genes associated with HLB tolerance.

13.
Lancet Respir Med ; 11(12): 1051-1063, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36958364

RESUMO

BACKGROUND: The complement pathway is a potential target for the treatment of severe COVID-19. We evaluated the safety and efficacy of ravulizumab, a terminal complement C5 inhibitor, in patients hospitalised with severe COVID-19 requiring invasive or non-invasive mechanical ventilation. METHODS: This phase 3, multicentre, open-label, randomised controlled trial (ALXN1210-COV-305) enrolled adult patients (aged ≥18 years) from 31 hospitals in France, Japan, Spain, the UK, and the USA. Eligible patients had a confirmed diagnosis of SARS-CoV-2 that required hospitalisation and either invasive or non-invasive mechanical ventilation, with severe pneumonia, acute lung injury, or acute respiratory distress syndrome confirmed by CT scan or x-ray. We randomly assigned participants (2:1) to receive intravenous ravulizumab plus best supportive care (BSC) or BSC alone using a web-based interactive response system. Randomisation was in permuted blocks of six with stratification by intubation status. Bodyweight-based intravenous doses of ravulizumab were administered on days 1, 5, 10, and 15. The primary efficacy endpoint was survival based on all-cause mortality at day 29 in the intention-to-treat (ITT) population. Safety endpoints were analysed in all randomly assigned patients in the ravulizumab plus BSC group who received at least one dose of ravulizumab, and in all randomly assigned patients in the BSC group. The trial is registered with ClinicalTrials.gov, NCT04369469, and was terminated at interim analysis due to futility. FINDINGS: Between May 10, 2020, and Jan 13, 2021, 202 patients were enrolled in the study and randomly assigned to ravulizumab plus BSC or BSC. 201 patients were included in the ITT population (135 in the ravulizumab plus BSC group and 66 in the BSC group). The ravulizumab plus BSC group comprised 96 (71%) men and 39 (29%) women with a mean age of 63·2 years (SD 13·23); the BSC group comprised 43 (65%) men and 23 (35%) women with a mean age of 63·5 years (12·40). Most patients (113 [84%] of 135 in the ravulizumab plus BSC group and 53 [80%] of 66 in the BSC group) were on invasive mechanical ventilation at baseline. Overall survival estimates based on multiple imputation were 58% for patients receiving ravulizumab plus BSC and 60% for patients receiving BSC (Mantel-Haenszel analysis: risk difference -0·0205; 95% CI -0·1703 to 0·1293; one-sided p=0·61). In the safety population, 113 (89%) of 127 patients in the ravulizumab plus BSC group and 56 (84%) of 67 in the BSC group had a treatment-emergent adverse event. Of these events, infections and infestations (73 [57%] vs 24 [36%] patients) and vascular disorders (39 [31%] vs 12 [18%]) were observed more frequently in the ravulizumab plus BSC group than in the BSC group. Five patients had serious adverse events considered to be related to ravulizumab. These events were bacteraemia, thrombocytopenia, oesophageal haemorrhage, cryptococcal pneumonia, and pyrexia (in one patient each). INTERPRETATION: Addition of ravulizumab to BSC did not improve survival or other secondary outcomes. Safety findings were consistent with the known safety profile of ravulizumab in its approved indications. Despite the lack of efficacy, the study adds value for future research into complement therapeutics in critical illnesses by showing that C5 inhibition can be accomplished in severely ill patients. FUNDING: Alexion, AstraZeneca Rare Disease.


Assuntos
COVID-19 , Pneumonia , Masculino , Adulto , Humanos , Feminino , Adolescente , Pessoa de Meia-Idade , SARS-CoV-2 , Respiração Artificial , Resultado do Tratamento
14.
Clin Transl Med ; 13(1): e1173, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629041

RESUMO

With rapid developments of single-cell sequencing and multi/trans-omics, clinical single-cell biomedicine is a new and emergent discipline to integrate single-cell molecular and clinical phenomes and uncover new disease-specific diagnoses and therapy. The journal of Clinical and Translational Medicine (CTM) launches the first CTM initiative of clinical single-cell biomedicine (cscBioMed) to promote the discovery and development of single-cell-based biology and medicine, speed the translation from single-cell biology into clinical application, and improve early diagnosis and therapy for human diseases. The cscBioMed initiative is speeding translational processes from circulating single-cell RNA sequencing into routine measures in clinical biochemistry of haematology, from spatial transcriptomics into single-cell pathology, and from single-cell-based biomarkers and targets into clinical diagnostics and target drugs. With a clear goal, we expect that cscBioMed will benefit human health by establishing a clinical single-cell dynamic monitoring and early predicting system and by improving diagnosis and treatment.


Assuntos
Ciência Translacional Biomédica , Humanos , Biomarcadores , Análise de Sequência
15.
Plant Dis ; 107(5): 1299-1309, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36410020

RESUMO

Pokkah boeng disease (PBD), a sugarcane foliar disease, is caused by various Fusarium spp. within the Fusarium fujikuroi species complex (FFSC). In the current study, we investigated the diversity of Fusarium spp. associated with PBD in China. In total, 320 leaf samples displaying PBD symptoms were collected over 10 consecutive years (2012 to 2021), during winter and summer, from six various sugarcane-growing regions (Guangxi, Yunnan, Guangdong, Zhejiang, Hainan, and Fujian) in China. Phylogenetic analysis of Fusarium spp. was reconstructed using translation elongation factor 1-α, and DNA-directed RNA polymerase II largest subunit and second-largest subunit multigene sequences. Evolutionary studies of these regions categorized the isolates into four FFSC species (F. sacchari, F. proliferatum, F. verticillioides, and F. andiyazi). The identified isolates, which developed irregular necrotic patches and rotting symptoms on the sugarcane plant after approximately 30 days were tested for their pathogenicity. Symptoms that appeared during pathogenicity testing were consistent with those observed under field conditions. Each strain of the pathogenic Fusarium spp. belonged to different vegetative compatibility groups (VCGs), and there was no affinity between VCGs. Our results contribute to understanding FFSC and accurately identifying Fusarium spp. associated with the sugarcane crop.


Assuntos
Fusarium , Saccharum , Filogenia , Virulência/genética , China , Grão Comestível , Variação Genética
16.
Microbiol Spectr ; 10(6): e0262222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409071

RESUMO

Huanglongbing (HLB; greening disease), caused by Candidatus Liberibacter asiaticus (CLas), is the most damaging citrus disease worldwide. The disease has spread throughout the citrus-producing regions of Guangxi, Guangdong, Fujian, and others in China. A total of 1,788 HLB-like symptomatic or asymptomatic samples were collected from the Guangxi and Fujian provinces of China to decipher the genetic diversity of CLas and its correlation with geographic region and host plant. The disease was the most severe in orange and the least in pomelo. CLas bacteria associated with the specific geographical and citrus variety infected more than 50% of the HLB-like symptomatic samples. We identified 6,286 minor variations by comparing 35 published CLas genomes and observed a highly heterogeneous variation distribution across the genome, including four highly diverse nonprophages and three prophage segments. Four hypervariable genomic regions (HGRs) were identified to determine the genetic diversity among the CLas isolates collected from Guangxi and Fujian, China. A phylogenetic tree constructed from four HGRs showed that 100 CLas strains could be separated into four distinct clades. Ten new strains with high variations of prophage regions were identified in the mandarin and tangerine grown in new plantation areas of Guangxi. Characterizing these HGR variations in the CLas bacteria may provide insight into their evolution and adaptation to host plants and insects. IMPORTANCE The hypervariable genomic regions derived from 35 published CLas genomes were used to decipher the genetic diversity of CLas strains and identify 10 new strains with high variations in prophage regions. Characterizing these variations in the CLas bacteria might provide insight into their evolution and adaptation to host plants and insects in China.


Assuntos
Liberibacter , Rhizobiaceae , Animais , Filogenia , Rhizobiaceae/genética , China , Insetos , Genômica , Variação Genética , Doenças das Plantas/microbiologia
17.
Sci Transl Med ; 14(662): eabn5168, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103512

RESUMO

Although it has been more than 2 years since the start of the coronavirus disease 2019 (COVID-19) pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of preventive vaccines, therapies to treat COVID-19 and other inflammatory diseases remain a major unmet need in medicine. Our study sought to identify drivers of disease severity and mortality to develop tailored immunotherapy strategies to halt disease progression. We assembled the Mount Sinai COVID-19 Biobank, which was composed of almost 600 hospitalized patients followed longitudinally through the peak of the pandemic in 2020. Moderate disease and survival were associated with a stronger antigen presentation and effector T cell signature. In contrast, severe disease and death were associated with an altered antigen presentation signature, increased numbers of inflammatory immature myeloid cells, and extrafollicular activated B cells that have been previously associated with autoantibody formation. In severely ill patients with COVID-19, lung tissue-resident alveolar macrophages not only were drastically depleted but also had an altered antigen presentation signature, which coincided with an influx of inflammatory monocytes and monocyte-derived macrophages. In addition, we found that the size of the alveolar macrophage pool correlated with patient outcome and that alveolar macrophage numbers and functionality were restored to homeostasis in patients who recovered from COVID-19. These data suggest that local and systemic myeloid cell dysregulation are drivers of COVID-19 severity and modulation of alveolar macrophage numbers and activity in the lung may be a viable therapeutic strategy for the treatment of critical inflammatory lung diseases.


Assuntos
COVID-19 , Macrófagos Alveolares , Humanos , Pulmão , Macrófagos , Monócitos
19.
Chin Med J (Engl) ; 135(15): 1781-1791, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35838548

RESUMO

ABSTRACT: Brain metastasis (BM) is the leading cause of mortality in lung cancer patients. The process of BM (from initial primary tumor development, migration and intravasation, dissemination and survival in the bloodstream, extravasation, to colonization and growth to metastases) is a complex process for which few tumor cells complete the entire process. Recent research on BM of lung cancer has recently stressed the essential role of tumor microenvironment (TME) in assisting tumor cells in the completion of each BM step. This review summarizes recent studies regarding the effects of TME on tumor cells in the entire process of BM derived from lung cancer. The identification of vulnerable targets in the TME and their prospects to provide novel therapeutic opportunities are also discussed.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Neoplasias Encefálicas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Metástase Neoplásica , Microambiente Tumoral
20.
Am J Respir Crit Care Med ; 206(12): 1480-1494, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35848993

RESUMO

Rationale: The current molecular classification of small-cell lung cancer (SCLC) on the basis of the expression of four lineage transcription factors still leaves its major subtype SCLC-A as a heterogeneous group, necessitating more precise characterization of lineage subclasses. Objectives: To refine the current SCLC classification with epigenomic profiles and to identify features of the redefined SCLC subtypes. Methods: We performed unsupervised clustering of epigenomic profiles on 25 SCLC cell lines. Functional significance of NKX2-1 (NK2 homeobox 1) was evaluated by cell growth, apoptosis, and xenograft using clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-associated protein 9)-mediated deletion. NKX2-1-specific cistromic profiles were determined using chromatin immunoprecipitation followed by sequencing, and its functional transcriptional partners were determined using coimmunoprecipitation followed by mass spectrometry. Rb1flox/flox; Trp53flox/flox and Rb1flox/flox; Trp53flox/flox; Nkx2-1flox/flox mouse models were engineered to explore the function of Nkx2-1 in SCLC tumorigenesis. Epigenomic landscapes of six human SCLC specimens and 20 tumors from two mouse models were characterized. Measurements and Main Results: We identified two epigenomic subclusters of the major SCLC-A subtype: SCLC-Aα and SCLC-Aσ. SCLC-Aα was characterized by the presence of a super-enhancer at the NKX2-1 locus, which was observed in human SCLC specimens and a murine SCLC model. We found that NKX2-1, a dual lung and neural lineage factor, is uniquely relevant in SCLC-Aα. In addition, we found that maintenance of this neural identity in SCLC-Aα is mediated by collaborative transcriptional activity with another neuronal transcriptional factor, SOX1 (SRY-box transcription factor 1). Conclusions: We comprehensively describe additional epigenomic heterogeneity of the major SCLC-A subtype and define the SCLC-Aα subtype by the core regulatory circuitry of NKX2-1 and SOX1 super-enhancers and their functional collaborations to maintain neuronal linage state.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição SOXB1 , Carcinoma de Pequenas Células do Pulmão , Fator Nuclear 1 de Tireoide , Animais , Humanos , Camundongos , Transformação Celular Neoplásica , Pulmão , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator Nuclear 1 de Tireoide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...